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Submovements Grow Larger,
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Submovements are hypothesized building blocks of human movement, discrete 
ballistic movements of which more complex movements are composed. Using 
a novel algorithm, submovements were extracted from the point-to-point 
movements of 41 persons recovering from stroke. Analysis of the extracted 
submovements showed that, over the course of therapy, patients’ submovements 
tended to increase in peak speed and duration. The number of submovements 
employed to produce a given movement decreased. The time between the peaks 
of adjacent submovements decreased for inpatients (those less than 1 month 
post-stroke), but not for outpatients (those greater than 12 months post-stroke) 
as a group. Submovements became more overlapped for all patients, but more 
markedly for inpatients. The strength and consistency with which it quantified 
patients’ recovery indicates that analysis of submovement overlap might be a 
useful tool for measuring learning or other changes in motor behavior in future 
human movement studies.
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During a kinematic analysis of stroke recovery, Krebs et al. (1999) observed a 
striking feature of the earliest movements made by recovering patients—they were 
“fragmented” and each of the fragments was highly stereotyped. This provided 
evidence that normal movement is composed of submovements which are minimally 
damaged by stroke. The fragments appeared to blend together as recovery proceeded, 
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thereby making movement smoother. In subsequent work (Rohrer et al., 2002), we 
showed that movement smoothness increased measurably and significantly and in 
a manner fully consistent with a theory of submovements, and did so in patients 
with a wide variety of ages, impairment severities, and time post-stroke. The nature 
of those changes supported a theory that patients’ movements were comprised of 
discrete submovements that grew more blended during recovery. In this article we 
further explore the use of discrete submovements as measures of recovery.

The existence of submovements has been supported by a wide range of studies 
over the past 100 years. These include observations of slow movements (Vallbo 
& Wessberg, 1993), eye saccades (Collewijn et al., 1988), cyclical movements 
(Woodworth,1899; Crossman & Goodeve, 1983; Doeringer, 1999), ballistic 
movements (Morasso, 1981), and movements requiring high accuracy (Milner, 
1992). Especially relevant to our work on stroke recovery is the observation that 
movements made by developing infants initially exhibit isolated submovements 
which subsequently appear to blend together as motor skills develop (von 
Hofsten,1991), a process that could be strikingly similar to our observations of 
recovery following injury to the central nervous system.

The proposal that unimpaired continuous movement is composed of blended 
submovements is theoretically attractive, in part because of its similarity to the 
hierarchical structure of language. Submovements provide a compact language for 
concisely coding movement; they can be described as fundamental building blocks 
of which movements are comprised, similar to words in a sentence or phonemes 
in a word. In the context of stroke recovery, the arrangement and characteristics 
of the building blocks might change during therapy, but the nature of the blocks 
themselves appears to remain constant. In this work, we investigate the nature of 
submovement changes during recovery. Submovement characteristics could provide 
new quantitative measures of motor performance, as well as provide insight into 
the nature of neural mechanisms underlying adaptation and motor recovery.

Methods

Participants
Forty-one participants, 12 women and 29 men, participated in this study conducted 
at the Spaulding Rehabilitation Hospital in Boston, MA. Fifteen participants were 
acute-stage inpatients who had suffered their first unilateral infarct less than 1 month 
before beginning the study, and 26 were chronic-stage outpatients between 12 to 
54 months post-stroke. Participants ranged between 19 and 83 years of age (mean 
age 59.0 years for inpatients, 54.4 years for outpatients). They were all hemiparetic, 
but were able to understand and carry out verbal instructions. Participants’ Fugl-
Meyer scores for upper-extremity function ranged between 3 and 54 (mean 11.9 for 
inpatients, 29.8 for outpatients). The protocol was approved by the Human Studies 
Committee at Spaulding Rehabilitation Hospital and by the Committee on the Use 
of Human Experimental Subjects of the Massachusetts Institute of Technology. All 
participants gave informed consent.
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Apparatus
MIT-MANUS and InMotion2 were the robotic therapy aids employed in this 
study. MIT-MANUS was designed and fabricated in the Newman Laboratory 
at the Massachusetts Institute of Technology (Hogan et al., 1995; Krebs et al., 
1998, 1999), and InMotion2 was based on its design and fabricated by Interactive 
Motion Technologies, Inc., Cambridge, MA. Both are planar robots, freely 
allowing all motion within a horizontal plane. A key characteristic of both robots 
is their “backdrivability,” that is, the ability to “get out of the way” when pushed 
by a participant. Thus, participants’ movements were minimally obscured by the 
dynamics of the robots. During all movements analyzed in this article, the robots 
were unpowered and acted as passive measurement devices that restricted patients’ 
hand motion to a horizontal plane. 

Procedure
Over the course of a therapy session, participants were directed to make a number 
of point-to-point movements, ending as near to the directed point as possible. 
When presented with a computer display of a center target, eight targets equally 
spaced around a circle, and the current position of the robot endpoint, participants 
moved from the center to each target, and back, starting at “north” and proceeding 
clockwise. Each target was 14 cm from the center. Inpatient participants typically 
received robot therapy five times per week, for 4 weeks; outpatients three times per 
week, for 6 weeks. Each session lasted approximately 1 hr. A computer recorded the 
position, velocity, and force exerted at the robot handle. In addition, each participant 
was clinically assessed at the beginning, middle, and end of therapy using several 
clinical scales administered by a clinician blinded to the type of robotic therapy 
provided. In the interest of clear presentation, only the Fugl-Meyer Test of Upper 
Extremity Function (Fugl-Meyer et al., 1975) has been included here. Other aspects 
of the clinical data have been discussed previously. (Fasoli et al., 2003)

Submovement Extraction Algorithm
The goal of submovement extraction is to infer the submovement composition 
of a movement from kinematic data. The approach taken here used tangential 
velocity curves. In the tangential velocity domain, a submovement is represented 
as a unimodal, bell-shaped function. Determining the number, relative timing, and 
amplitude of submovements that most closely reproduce the original tangential 
velocity data is a global nonlinear optimization problem, which problems are, in 
general, difficult to solve. Although several submovement extraction algorithms 
have been proposed previously (Morasso & Mussa-Ivaldi, 1982; Flash & Henis, 
1991; Milner, 1992; Berthier, 1996; Lee et al., 1997; Burdet & Milner, 1998), all 
are subject to finding local, rather than the global, minima and producing spurious 
decomposition results (Rohrer & Hogan, 2003). Principal Components Analysis was 
also evaluated for use in submovement extraction but was found to be inappropriate 
in that it extracted continuous time components spanning the entire movement, 
containing parts of several submovements. An algorithm guaranteed to find the 
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global minimum in extraction was proposed in Rohrer & Hogan (2003). As a result 
of the computational demands of that approach, for the work presented here we 
developed an alternative submovement extraction algorithm, based on the notion 
of “scattershot” optimization, that is, local optimization starting from a number 
of random initial conditions. The scattershot algorithm finds the globally optimal 
submovement composition probabilistically, that is, the probability of finding the 
globally best fit can be made arbitrarily close to one by increasing the number of 
random starting points used in the optimization. 

Submovements were extracted from participants’ tangential velocity data 
using MATLAB’s fmincon function (MATLAB®, The MathWorks, Natick, MA) 
initialized at 10 randomly selected points in the solution space. The submovement 
functions extracted were support-bounded lognormal (LGNB) curves, a 
submovement shape proposed by Plamondon (1992) and found to fit point-to-
point drawing movements better than 22 other candidate functions (Plamondon et 
al., 1993). LGNB submovements can take on a wide range of submovement-like 
shapes. Submovement start time, maximum speed, and duration can all be varied 
independently, as can the skewness (asymmetry) and kurtosis (“fatness”) of the 
curve. Submovements were allowed to take on a duration between 167 ms and 1500 
ms. Submovements were not fit one at a time, as in a “greedy” algorithm. Rather, 
all the parameters of all the submovements were optimized simultaneously. An 
increasing number of submovements were fit to each movement until the error, E, 
fell below a predetermined threshold, in this case 2%. Absolute error was used, 
that is, for a movement speed profile, G(t), and an extracted speed profile, F(t), 
the error, E, is given by

E  =
−∫

∫
F t G t dt

G t dt

( ) ( )

( )

Five characteristics of the submovements are summarized in the results plots. 
Each submovement is characterized individually by its duration and peak speed. 
The relative and collective characteristics of the submovements are represented by 
the number of submovements in the entire movement, inter-peak interval (interval 
between peaks of consecutive submovements), and overlap (interval between 
initiation of a submovement and termination of the previous one). 

The scattershot algorithm is probabilistic in nature, that is, the results are 
globally optimal with some probability close, but not equal to, unity. As a result, 
the actual submovement characteristics extracted for a given submovement might 
not be optimal—that is, the submovements extracted cannot be guaranteed to be 
the best fit for that movement in a global sense. The large amount of data and large 
number of participants involved in the study, however, allows strong statistical 
statements to be made from the data. Even if the results of any given extraction 
could be uncertain, the trends observed in thousands of extractions bear statistical 
weight and, in fact, reach significance.

The scattershot algorithm is, of course, sensitive to the parameters under which 
it operates. The submovement function used (e.g. LGNB, minimum jerk, Gaussian), 
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the maximum allowable submovement duration, and the maximum permissible fit 
error all were shown to produce slightly different results. A sensitivity analysis 
was performed to determine the dependence of results on these factors. Although 
too lengthy to be reported here in full, it can be found in Rohrer (2002). It was 
concluded that the changes in extracted submovement parameters during therapy 
are robust to all these factors. Therefore, changes in submovement parameters will 
be emphasized in the Results and the Discussion sections.

Figure 1 Creation of a “change bar” used in the results summary plots. Each point 
represents a single submovement. A line was fit to the data using least-squares 
regression. The bar to the right of the plot represents the change in the parameter 
value over the course of therapy, with the horizontal line on the bottom indicating 
the value of the parameter at the beginning of therapy and the height box indicating 
the extent of the change during therapy. In subsequent plots, a solid bar represents a 
statistically significant change (p < .05); an unfilled bar represents a change that did 
not reach statistical significance.
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Statistical Analysis
Using linear regression, a line was fit to each of the submovement characteristics 
over the course of therapy for each participant, and the confidence interval for 
the slope was determined. See Press et al., (1992) for a detailed mathematical 
description of the procedure. The change bars in the results summary plots were 
generated by taking the values of the linear fit at the first and last days of therapy 
as the initial and final values of the characteristic (Figure 1).

Results

Patients’ Submovement Characteristics
Figure 2 shows typical submovements from the first and last therapy days for one 
participant. Observed differences are representative of the participant population 
as a whole. Submovements on the last day of therapy are fewer and of greater 
amplitude and duration than on the first. The final day’s submovements also show 
more extensive overlap. Figure 3 shows the changes in the patients’ submovement 
characteristics over the course of therapy. Figure 4 summarizes the trends in each 
metric for the patient population as a whole and for inpatient and outpatient groups 
separately. Despite wide variations between patients, several general observations 
can be made: (a) every significant change in the number of submovements was a 
decrease; (b) the participants’ submovements tended to increase in duration and 
peak speed; (c) the inter-peak interval decreased for inpatients, but showed no 
trend for outpatients; and (d) the only significant changes in submovement overlap 
were increases.

Figure 2 Typical movements from the first and last days of therapy for participant 
701. Bold lines indicate the tangential velocity during the movement. Fine lines indicate 
the submovements of which the movement is composed. The later movement shows 
fewer submovements, which have greater peak speed, duration, and overlap than the 
earlier movement. These differences are representative of those observed throughout 
the participant population.
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Figure 3 Changes in submovement characteristics by patient. Changes in submovement 
characteristics from the first day to the last day of therapy are shown for all patients. 
The initial value is represented by the horizontal bar. For statistically significant changes 
(p < .05) the box is filled, otherwise it is unfilled.
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Several submovement characteristics were comparable for both inpatients and 
outpatients. Typical submovement durations for both groups were approximately 
1200 ms, significantly longer than the 500 ms typically observed. (See the 
Discussion section for further details.) Eight submovements per movement was 
typical for both groups, as well, and on average, submovement amplitudes were 
near .07 m/s.

Figure 4 The number of patients who showed increases and decreases in each of 
five submovement characteristics, by inpatient group, outpatient group, and overall. 
White bars indicate the total number of participants in each group showing a change, 
and black bars indicate how many of those were statistically significant at the p < .05 
level.
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For inter-peak interval and submovement overlap, the magnitude of the 
changes of inpatients’ submovement characteristics were greater than those of 
outpatients (significant at p < .05). With respect to these two characteristics, the 
final values for outpatients appear to be closely grouped around a common mean. 
Inpatients’ values appear to converge to these common means during therapy. For 
example, in Figure 3, panel (e), outpatients’ values for overlap are all grouped 
tightly around .7 to .8 s. Inpatients’ initial values tend to be lower than .7 s, but 
(with a few exceptions) increase markedly. The final values of overlap are much 
more closely grouped around .7 s.

It is to be expected that the inter-peak interval would have a lower bound; not 
only is it bounded below by zero (by definition), but evidence of a psychological 
refractory period (Telford, 1931; Craik, 1947) suggests that the lower bound could 
be significantly higher (Miall et al., 1993). The data presented here shows evidence 
of inter-peak intervals descending to an asymptote. Although inpatients began 
with a wide range of inter-peak intervals (from .4 s to .8 s), at the completion of 
therapy they all fell in a narrow band centered approximately at .45 s. Outpatients 
tend to begin and end therapy in that same band, the majority of them showing no 
significant change.

Clinical Measures of Recovery
Inpatients and outpatients had a wide range of Fugl-Meyer scores both at the 
beginning and end of therapy. On average, however, admission Fugl-Meyer scores 
were significantly lower in inpatients, as compared to outpatients (p < .001). Over 
the course of robotic therapy, both inpatients and outpatients showed statistically 
significant gains in Fugl-Meyer scores (p < .0001).

Although the patients’ age range was quite large, there was no statistically 
significant difference in age between inpatients and outpatients as groups. Therefore, 
the observed differences in inpatient and outpatient performance cannot be attributed 
to variations in patients’ ages. Furthermore, changes in patients’ submovement 
characteristics showed no meaningful correlation with age, yielding r^2 < .07 in 
all cases (see Table 1). 

Table 1 Single-variable correlation between changes in each submovement 
characteristic and changes in the Fugl-Meyer, time post-stroke, and participant’s 
age (square of Pearson’s r).

Submovement 
characteristic Number Duration Amplitude 

Inter-peak 
interval Overlap

Age .06 .00 .00 .03 .04

Change in 
Fugl-Meyer 

.01 .00 .08 .04 .05

Time post-
stroke

.07 .00 .07 .19 .29
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To test how accurately observations of submovement characteristics were 
predicted in clinical scores, single-variable correlations were calculated between 
changes in each of the five submovement characteristics, changes in the Fugl 
Meyer score and time post-stroke (see Table 1). For N = 41 participants at a 5% 
significance level, correlations become significant at r^2 > .0949 (Press et al., 
1992). The correlation is statistically significant in only two cases; inter-peak 
interval and overlap correlated with time post-stroke (r^2 = .19 and r^2 = .29, 
respectively). This indicates that changes in submovement characteristics are not 
directly related to changes in Fugl-Meyer scores, but could be somewhat related 
to time post-stroke.

Discussion
In previous work, we demonstrated that movement smoothness tends to increase 
during stroke recovery, and that the increases in smoothness are well described by 
a model of changes in submovement characteristics (Rohrer et al., 2002). Here, by 
directly extracting submovements, we provide additional support for a model of 
discrete submovements and find greater insight into the nature of motor recovery 
after a stroke. 

Submovement Characteristics
Significant changes were observed in the submovement characteristics of both 
inpatients and outpatients. Submovement durations and amplitudes increased, inter-
peak interval and overlap decreased, and the total number of submovements grew 
fewer. Despite uncertainties in the precise values of the extracted submovement 
characteristics, it is nonetheless interesting to consider the values produced. For 
instance, an inter-peak interval of .4 to .5 s indicates that new submovements 
are being initiated on average 2 to 3 times each second. This is quite plausible; 
prior work involving human performance during pursuit tracking tasks showed 
that participants made discrete corrections on the average of once every one-half 
second (Craik, 1947). 

Extracted submovement durations of 1.2 s are longer than previously observed 
ballistic movement durations (Beggs & Howarth, 1972). This might be caused by 
the tendency of LGNB submovements to develop long tails when they become 
significantly asymmetric. The long tail contributes very little to the movement speed, 
but does result in an artificially long submovement duration. A more physically 
meaningful measure of submovement duration would be the length of time that 
the submovement exceeds 5% of its peak speed. This would eliminate the artifacts 
generated by excessively long tails. 

Time Course of Recovery
Inpatients’ and outpatients’ submovements shared many trends, but they differed in 
one key aspect: while inpatients’ submovements consistently grew closer together 
(inter-peak interval decreased), outpatients’ submovements showed no such trend. 
Furthermore, inpatients’ inter-peak interval seemed to approach a limit, defined by 
outpatients’ typical values. This suggests that during recovery inter-peak interval follows 
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an asymptotic time-course, approaching a minimum value, over a time period on the 
order of 1 year. Further investigation is necessary to reveal whether other submovement 
characteristics also follow asymptotic patterns, and on what timescales.
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